
Procedurally Generated, Adaptive Music for Rapid Game
Development

Timothey Adam, Michael Haungs, Foaad Khosmood
Dept. of Computer Science

California Polytechnic State University
1 Grand Avenue

San Luis Obispo, California
tiadam@calpoly.edu, mhaungs@calpoly.edu, foaad@calpoly.edu

ABSTRACT
Audio design is an important aspect of game development
which may be neglected in time-limited rapid prototyping
game creation events. In such environments, members of
small development teams often multitask or switch roles, but
they may not possess the necessary time, resources or skills
for original music compositions. In this paper, we present
AUD.js, a system developed for procedural music genera-
tion for JavaScript-based web games. By taking input from
game events, the system can create music corresponding to
various Western perceptions of music mood. The system
was trained with classic video game music. Game develop-
ment students rated the mood of 80 pieces, after which the
Markov Chains of those pieces were extracted and added into
AUD.js. AUD.js can adapt its generated music to new sets
of input parameters, thereby updating the perceived mood
of the generated music at runtime. We conducted a user
study during Global Game Jam 2014 at Cal Poly. We find
that while the quality of the audio is lower than hand-picked
or composed pieces of music, AUD.js is capable of being a
useful and cost-saving tool for game developers working with
constraints.

Categories and Subject Descriptors
J.5 [Arts and Humanities]: Music; K.8 [Personal Com-
puting]: Games; H.5.5 [Information Interfaces and Pre-
sentation]: Sound and Music Computing

Keywords
Procedural Composition, Music Mood Adaptation, Game
Jams, Computer Music, Emotion

1. INTRODUCTION
Procedurally generated music has been a topic sparsely re-
searched but frequently revisited. Early work, like Iannis
Xenakis’ Illiac Suite [11], is mostly limited to simple prob-
abilistic methods, such as Markov chains and probabilistic

grammars [6]. Other areas of research include exploring top-
ics from mathematics and artificial intelligence, like the use
of fractals and genetic algorithms. For example, machine
learning has been used to generate jazz music [8]. Some
systems even combine multiple techniques, like genetic algo-
rithms and Markov chains [2]. Recent research, like the work
of David Cope, seeks to model creativity when generating
music in an attempt to have computers generate pieces that
sound as if they were composed by a human [4].

Procedural audio has previously been used in games, though
not for generating full melodies. Game audio needs to meet
the burden of being pertinent and impactful towards game-
play, something procedurally generated audio rarely achieves
[3]. Instances of procedural music in games are usually only
to modify or adapt the composed music to avoid sounding
repetitive when listened to many times [3]. A solution for
this problem is using complex logic to create the music, but
very few projects have the budget to dedicate to engineers
for these purposes [3]. Current algorithms for procedural
music generation typically also have the issue of being less
appealing aesthetically than composed pieces. Unless the
chosen system can interact on a raw signal or even a sample
level, the music would doubtfully sound composed. That
kind of low-level interaction is costly, both from a real-time
performance and a financial point of view [5].

During game jams 1, audio integration can be challenging. It
is rare for a team attempting to create a game in the span of
a few days to have a dedicated composer. Even if the team
does, due to the stressful nature of the event, coordination
between the composers, audio designers, and the program-
ming team can be sparse. This can lead to subpar audio if
the team cannot find a way to dedicate a significant amount
of time to audio development and integration. In addition,
having a musician or sound designer on the team doesn’t
necessarily lead to good integration with the game’s tempo,
logic, or user input. An example of a solution to this prob-
lem is 2013’s audiodraft.com “Create Music for Game Jam
Team 2” contest, where participants from all over the world
could submit music to be used in game jams [1]. Even if a
Game Jam team has outstanding audio, that audio is likely
static and unchangeable at their game’s runtime. Trying to

1A game jam is a gathering of game developers for the pur-
pose of planning, designing, and creating one or more games
within a short span of time, usually ranging between 24 to
48 hours.



make the static music adaptive would also likely break the
flow of the track, thereby detracting from the quality of the
music experience. Truly adaptive music, which changes with
the mood of the game, would require an exponentially larger
commitment from the composers as well as careful planning
of the game events. Those both can be problematic in a
Game Jam setting.

This paper presents AUD.js, a tool for procedural music gen-
eration based on an input ‘mood’, and capable of adapting
the music to different moods at runtime. The system pro-
vides a small but powerful API, making it capable of accel-
erating game development. This would reduce pressure on
developers, and the mood-based approach helps the system
be applicable to multiple genres and types of games.

2. AUD.JS
This section presents a description of the input elements and
API of AUD.js such that potential developers could under-
stand how to use this software.

2.1 Input Model
Previous work has examined the mood of music by anal-
ysis on several spectra, including loudness of the music,
tempo, mode, harmonic complexity and variety of timbre.
[7]. Based on these qualities, the music can be placed in
an ”emotion space” - a visual representation of human emo-
tion. One such representation is the Russell mood model
[10], which categorizes emotion in terms of two axes: arousal
& valence. Other terms that have been used for these axes
include {active/passive} & {positive/negative}, activity &
pleasure or stress & energy in the Thayer model of mood
[9].

Since AUD.js seeks to generate music based off of a repre-
sentation of music mood, the generation process starts with
the user entering five parameters (see figure 1):

1: Stress is the first component of the model of mood this
system uses2 and typically governs the level of harmony and
dissonance of the music.

2: Energy is the second component of the model of mood
this system uses2, and typically governs the rhythm, tempo,
and pace of the music.

3: The seed ensures a unique, re-creatable piece is generated
as it seeds the random number generator which governs the
random aspects of the generation process. Each unique seed
will result in a unique sequence of random numbers used to
choose notes in the melodies, thereby resulting in a unique
piece.

4: The number of patterns indicates the number of unique 4-
measure strings of notes should be generated. Each measure
contains up to 8 eighth notes.

5: The repeat of patterns indicates how many times a gener-
ated 4-measure string of notes should repeat. Longer repeat
values will result in minor variation in the notes of the re-
peated patterns.

2See in general: Livingstone & Brown (2005)

Figure 1: AUD.js input UI elements.

2.2 Software Structure
AUD.js is a browser-based framework built on Webkit Au-
dio. This allows AUD.js to populate the audio buffers used
by the browser to play sound, and manipulate that raw au-
dio. The AUD interface module reads AUD.js’ generated
music, and converts it to digital audio as needed (indicated
by Webkit Audio’s node.onaudioprocess callback function
calls). The interface creates the audio signal at runtime,
thereby allowing the music to adapt when the melodies in
AUD.js change. When a change in AUD’s generated music
occurs, the AUD interface linearly interpolates between the
old melody and the new melody over approximately one sec-
ond (40000 samples, where the typical sample rate is 44100
samples per second).

Figure 2: AUD.js software design. 1: The web
browser on which AUD.js runs. 2: The interface
module that converts arrays of notes (generated melo-
dies) into digital signals, to be played through the
browser. 3: The AUD module itself.

2.3 API
AUD.js provides an API for other developers to include the
functionality of this system in their own applications. This
API consists of:

Table 1: AUD.js API description.

generatepattern
(stress, energy,
numberpatterns,
repeatspatterns,
seed)

Starts the generation process from
the beginning: all the parameters are
reset and the piece that’s playing gets
overwritten and reset to the begin-
ning of the new piece.



adaptpattern
(stress, energy)

Adapts the current piece to a new
mood by regenerating the entire
piece, but not changing the length
or the seed. The random number
generator is reset, thereby ensure the
same piece is regenerated with the
new given mood. The net effect is
that the piece keeps playing, except it
will now have a perceivably different
mood (provided the new stress and
energy are sufficiently different as to
warrant a perceivable difference).

togglepause() Pauses the song if it’s playing or re-
sumes it from where it was paused.

toggleplay() Resets the song to the beginning and
either pauses it or resumes is depend-
ing on whether it was playing.

isplaying() Returns whether the piece is playing
as a boolean value.

setvolume
(newvolume)

Sets the volume of the system’s out-
putted music to the new given value
(it should be between 0 and 1, where
0 is muted and 1 is the maximum vol-
ume possible).

A full tutorial on how to use AUD.js is provided at timoth-
eyadam.com/AUD.

3. IMPLEMENTATION
This section explains the algorithm AUD.js uses to generate
music based on mood and AUD.js’ software structure.

3.1 Music Mood Representation
Once the input is received, a base note is selected. The
base note is a randomly chosen number between 12 and 24,
representing the C1 to C2 notes (the system’s full range is C0
[0] to C8 [96], representing frequencies of 16.35 Hz to 4186
Hz). Individual instruments can be up to 5 octaves higher:
all instruments share the same base note phase shifted to
different octaves.

Next, a map is constructed. The map is a two dimensional
array of floats, akin to a Markov Chain3. This map indi-
cates note prevalence chances starting at the base note and
ending at eleven half steps above the base note, thereby rep-
resenting probabilities of any of the 12 uniquely named notes
occurring with any of the twelve notes. This map is gener-
ated by linearly interpolating the stress and energy values
between maps corresponding to all possible combinations of
low, moderate, and high stress and low, moderate and high
energy. As shown in figure 1, stress and energy can be plot-
ted on a two dimensional square. For interpolation purposes,
low stress/energy corresponds to 0, moderate stress/energy
corresponds to 0.5 and high stress/energy corresponds to 1.

When generating, to linearly interpolate between maps, the
stress and energy values are placed in the appropriate quad-
rant of a stress-energy grid (see figure 1). The 4 closest maps
are averaged together based on their proximity to the stress

3A Markov Chain is a state machine where each state tran-
sition has an associated percentage change. All outgoing
transitions from any state have probabilities totaling 100%.

and energy values: the closer the map is to the desired stress
and energy values, the more contribution it will have on the
resulting map.

Figure 3: One of 12 entries in the map, showing the
likelihood of an ‘A’ note being played with any other
named note.

3.1.1 Music Mood Data
The maps used for interpolation were extracted by parsing
note prevalence of classic video game soundtracks. A total of
80 pieces were rated by first-year game developers (potential
end-users of the system) as having either low, moderate or
high stress and low, moderate or high energy on a scale from
1 to 5. The average stress is 2.9 / 5 and the average energy
is 3.3 / 5, meaning high energy is slightly overrepresented
(see figure 4). Each piece was rated by at least 30 people,
and a total of 93 people participated. For a full list of pieces
used, see Appendix 1. These studies were conducted by the
authors on December 3, 2013 and February 18, 2014 during
Cal Poly’s Intro to Game Design and Intro to Interactive
Entertainment resprectively.

Figure 4: The distribution of the rated value of each
piece used in training AUD.js.



3.2 Fractal Maps
The next step of the generation process is creating a per-
cussion pattern based on the energy. Percussion in AUD.js
takes the form of a short hit of a noise wave, representing a
snare drum or kick, and a longer, fading out noise wave, rep-
resenting a high hat. The higher the energy level, the faster
the attack and decay of both will be. The percussion is ran-
domly generated according to a fractal probability, given a
32-tick string to fill (4 measures or 8 eighth notes each):

• Extremely likely to play percussion on multiples of 8

• Highly likely to play percussion on multiples of 4 (that
aren’t multiples of 8)

• Moderately likely to play percussion on multiples 2
(that aren’t multiples of 8 or 4)

• Not very likely to play percussion on multiples of 1
(that aren’t multiples of 8, 4 or 2)

Figure 5: Fractal probabilities over 8 ticks.

The likelihood of percussion being played is amplified by
energy: higher energy means more percussion. A percussive
hit will occur if the following expression is true:

random number + energy > [percentage calculated from frac-
tal map]

3.3 Creating Melodies (Note by Note)
The next step in the generation process is to create tracks of
melody. AUD.js currently supports 4 unique tracks, each ca-
pable of producing 4 different length notes (1,2,4 or 8 eighth
notes long). Each one is randomly assigned a waveform: tri-
angle wave, sawtooth wave or square wave. The envelopes
for their notes are dependent on energy (like with percus-
sion, higher energy means sharper attack and decay, whereas
lower energy means more fade-in and fade-out). To deter-
mine when a track should play a note, for each note length,
it checks the same formula as percussion does, but with in-
creased probability if there was a percussive hit:

random number + energy > [percentage calculated from frac-
tal map] – [percussive hit value]

When a track needs to play a note, the note is chosen based
on the earlier generated map and other notes that are play-
ing.

A set of notes will be created that contains all notes that
are valid to be played (given the base note and other notes
that are playing). For a note to be valid, its entry in the
Markov Chain map must be greater than the fractal cutoff
for each note in the set it’s being compared against:

Candidate note valid if:

map[candidatenote][comparisonnote] > [fractalpercentage]

This gives a list of candidate notes, from which one is se-
lected based on the prevalence table probabilities.

Figure 6: Note prevalence given that the base note
is an ‘A’.

This process is repeated until the 32-tick string is filled.

3.4 Other Aspects
To ensure that the generated music doesn’t sound too ca-
cophonous, AUD.js will randomly prevent tracks from gener-
ating notes for a 32-tick string, thereby reducing the amount
of instruments playing at once at any time. This is also de-
pendent on energy: with higher energy, more tracks will be
playing simultaneously.

To create repeating motives, AUD.js may randomly forward
a generated pattern ahead to a future pattern of the full
piece. This ensures the 32-tick string in the track is reused
when the generation process gets to that particular future
string. This will only happen if there is sufficient space to
move a pattern forward (i.e. the generative process is not
nearing the end of the desired piece’s length).

To provide slight variation in repetitions of a single string,
AUD.js may randomly change some notes when copying over
strings into following strings. This depends on the inverse
fractal (see figure 5): it’s very unlikely to change something
on a multiple of 8 out of 32 ticks, but highly likely to change
a note on the multiples of 1 (that aren’t multiples of 2, 4, or
8). The new note is chosen using the same method as listed
above. This process will only be applied if the user selects to



have more than patterns repeat more than once (i.e. 32-tick
strings will need to be copied to perform the repeat).

4. EXPERIMENT
This section presents the hypothesis and expirement for as-
sessing AUD.js’ effectiveness.

4.1 Hypothesis
With the following experiments, we will try to ascertain
that AUD.js effectively provides musical backing for a video
game. We will also attempt to show that use of a procedural
music generation software library augments the development
of a game during a game jam.

4.2 Method
AUD.js’ evaluation took place at Cal Poly’s 2014 Global
Game Jam site in San Luis Obispo, California.

During the Jam, participants had the option to use the
AUD.js system to provide them with music. Once the jam
was over, the developers that used the system were given
the following survey. If participants building a game in
javascript chose not to use AUD.js, they were instead given
a survey to assess why they chose not to.

People interested in games developed at Cal Poly’s Global
Game Jam site played the games that had the AUD.js sys-
tem integrated, and filled out a survey assessing their opin-
ion of the game and its music. For comparison, survey re-
sults were also collected on games that didn’t use the AUD.js
system.

4.3 Developer Survey
Out of the four teams at Cal Poly’s Global Game Jam that
considered using AUD.js, one ultimately decided against
keeping it in the final project.

4.3.1 Games with AUD.js
Three teams used AUD.js: Bullet’space (2 person team),
Anellu Moore (6 person team) and Phancy Adventures of
Charles the Cat (6 person team). All games can be found at
http://globalgamejam.org/2014/jam-sites/cal-poly/games.

Out of these teams, 12 people filled out the survey.

Table 2: Developer Survey Results A

Rate how easy you felt the AUD.js API
was to use.

4.41 / 5

Rate how easy the music mood model
(stress, energy) was to understand.

4.5 / 5

Rate the quality of the generated music. 3.58 / 5
Rate how well the music responded to the
input mood you gave.

3.91 / 5

Would you use AUD.js again in the fu-
ture?

91% yes

4.3.2 Games without AUD.js
One team that created a game with javascript decided against
using AUD.js: 5Alive (5 person team). This game can be
found at http://globalgamejam.org/

2014/jam-sites/cal-poly/games. Four members of this team
filled out the survey (duplicate/highly similar feedback is
omitted below).

Table 3: Developer Survey Results B

Why did you
elect not to use
AUD.js?

“A day into the jam a musician vol-
unteered to do our music.”
“The song we had fit better, and the
game’s feel did not depend on the
music adapting.”
“Was cool, but didn’t fit the tone of
the game well.”

How did you get
your music for
your game?

A day into the jam a musician volun-
teered to do our music.

Would you con-
sider using a sys-
tem like AUD.js
for a different
project?

100% yes

What would
need to be
improved in
AUD.js before
you would con-
sider using it in
a Game Jam?

“Not having a musician, as a musi-
cian will be able to craft a more co-
herent melody to match the tone of
the game.”
“We’d need a game that depended
more on it and it would be if the au-
dio quality was higher.”
“Possibility for different styles. No
console logs.” (A developer build of
AUD.js had been distributed during
the GGJ; debug logs had been left in.)
“As hard as it is, the quality of the
songs. For people who don’t realize
the music is procedural, it can be off-
putting.”

4.4 Player Survey
23 people rated games developed at Game Jams at Cal Poly.
These people were randomly assigned to one of four games,
two of which used the AUD.js framework. These people were
not told they would be reviewing the music and weren’t told
that the music may be procedurally generated and adapt-
ing. Only the most representative responses of the written
responses are included.

4.4.1 Games with AUD.js
15 people rated either Bullet’space or Anellu Moore, which
both had AUD.js integrated.

Table 4: Player Survey Results A

Rate how immersed you felt in the game. 1.93 / 5
Rate how effective you found the music
to be.

1.64 / 5

Rate how much you enjoyed the music. 2.21 / 5
Would you listen to the music if it wasn’t
in a game?

13% yes

Did you feel the music was responsive to
game events and user controls?

33% yes



Was there an event in the game, or a spe-
cific control that triggered a music change
that you noticed?

40% yes

What could be improved about the music?

• “Music is too loud/screachy (too high pitched)”

• “Chiptune isn’t my thing”

• “[The music] didn’t sound like it belonged in the game”

4.4.2 Games without AUD.js
8 people rated either Tricollide or heart4u (games from pre-
vious Cal Poly game jams, with comparable gameplay qual-
ity as the AUD.js-integrated games 4).

Table 5: Player Survey Results B

Rate how immersed you felt in the game. 2.25 / 5
Rate how effective you found the music
to be.

3.87 / 5

Rate how much you enjoyed the music. 3.75 / 5
Would you listen to the music if it wasn’t
in a game?

12.5% yes

Did you feel the music was responsive to
game events and user controls?

37.5% yes

Was there an event in the game, or a spe-
cific control that triggered a music change
that you noticed?

12.5% yes

What could be improved about the music?

• “Not sure”

• “More variation”

• “A bit of reaction to what I was doing”

5. CONCLUSION
From the results we can draw a number of conclusions.
AUD.js seems to have accelerated the development process:
it was easy to use and pick up, and according to developers
it provided reasonable quality sound. The instrumentation
quality could use some improvement though. Most develop-
ers would be open to using a system like AUD.js, especially
if the team doesn’t have a composer or is creating a game
where the perceived mood of the music changes frequently.

As for the results from people who played the games, AUD.js’
generated music quality is markedly lower than that of com-
posed music, which is unsurprising. Again, the surveys show
the instrumentation quality must be improved. The AUD.js
version used during the game jam used only basic wave-
forms (square, triangle, sawtooth, noise) to create a prim-
itive ‘chiptune’ sound. This style does not work for every
type of game. As the survey showed, more variety in instru-
ment timbres would be an important addition.

4Other games from Cal Poly’s 2014 Global Game Jam ei-
ther had additional hardware requirements, were platform-
specific or were largely unfinished.

Players seemed to start to pick up on the runtime adapta-
tions of the music created by AUD.js. In the case of com-
posed music, players seemed to desire more feedback from
the music. This shows that there definitely is an audience
desire for a type of adaptive music system.

In general, AUD.js could be a very valuable tool, in the
sense that it speeds up game development time and that it
is capable of adapting the music it generates at runtime. In
its current state though, the generated audio quality hinders
its effectiveness. The next step in developing AUD.js will be
to address that weakness.

A working version of the AUD.js system can currently be
found at timotheyadam.com/AUD, though because of its de-
pendency on WebkitAudio will only run on Chrome browsers.

6. ACKNOWLEDGEMENTS
The authors would like to thank Cal Poly Professor John
Clements, whose insights greatly helped improve the music
quality of the system.

The authors would also like to thank Nick Alereza, Travis
Angevine, Taggart Ashby, Ethan Nakashima and Thomas
Soria for reviewing the paper and providing helpful insights.

The authors thank the 93 game development students who
helped provide the music mood data for AUD.js’ training.

The authors also thank all the members of the 5Alive, Anellu
Moore, Bullet’space, heart4u, Phancy Adventures of Charles
the Cat and Tricollide teams for helping evaluate the AUD.js
system.

7. REFERENCES
[1] Challenge: Create game music for game jam team 2.

https://www.audiodraft.com/contests/190-Challenge-
Create-game-music-for-Game-Jam-Team-2,
2013.

[2] C. Bell. Algorithmic music composition using dynamic
markov chains and genetic algorithms. volume 27,
pages 99–107, 2011.

[3] K. Collins. An introduction to procedural music in
video games. Contemporary Music Review, 28(1):5–15,
2009.

[4] D. Cope. Virtual music: computer synthesis of musical
style. MIT press, 2004.

[5] A. Farnell. An introduction to procedural audio and
its application in computer games. In Audio Mostly
Conference, pages 1–31, 2007.

[6] H. Jarvelainen. Algorithmic music composition.
Tik-111.080 Seminar on content creation, 2000.

[7] S.R. Livingstone and A.R. Brown. Dynamic response:
real-time adaptation for music emotion. In Proceedings
of the second Australasian conference on Interactive
entertainment, pages 105–111, 2005.

[8] R. Ramirez and A. Hazan. A learning scheme for
generating expressive music performances of jazz
standards. In International Joint Conference On
Artificial Intelligence, volume 19, page 1628, 2005.

[9] J.R. Newman R.E. Thayer and T.M. McClain.
Self-regulation of mood: Strategies for changing a bad



mood, raising energy, and reducing tension. Journal of
Personality and Social Psychology, 67(5):910–925,
1994.

[10] J.A. Russell. A circumplex model of affect. Journal of
personality and social psychology, 39(6):1161, 1980.

[11] I. Xenakis. Formalized music. Bloomington: Indiana
University Press, 1971.

8. APPENDIX 1: LIST OF EVALUATED MU-
SIC TRACKS

Each piece was reviewed by approximately 30 people. A
total of 93 game design students participated in this study.

Franchise Name Stress Energy
CastleVania Bloody Tears 3.48 4.32
(Konami) Ending 1.47 1.31

Heart of Fire 3.5 3.8
Nocturne of Shadow 3.18 1.57
Out of Time 3.02 4.31
Poison Mind 3.9 4.06
Silence of Daylight 3.46 3.7
Stalker 3.03 3.66
Vampire Killer 3.1 3.73
Walking on the Edge 4.97 3.65
Wicked Child 4.28 4.2

Donkey Kong Candy’s Theme 1.46 1.9
(Nintendo) Forest Frenzy 3.32 2.96

Fungi Forest 1.26 1.76
Gangplank Galleon 1.2 4.4
Map 1.48 3.36

Final Fantasy Airship 1.8 4.36
(Square Enix) Clash on the Big Bridge 3.84 5

Golbez Clad in Darkness 3.96 1.84
Mana’s Mission 2.72 1.56

Fire Emblem Fortune Teller 2.83 3.46
(Nintendo) Inescapable Fate 3.44 2.52

Main Theme 1.73 3.1
Reminiscence 2.23 1.66
Together We Ride 3.1 3.42

Legend of Zelda Bolero of Fire 3.84 2.68
(Nintendo) Boss Battle 4.15 3.81

Deku Palace 2.76 3.48
Death Mountain 3.86 2.55
Dungeon 4.48 2.96
Ganondorf Battle 4.44 4.6
Gerudo Valley 2.55 3.28
Goron Race 1.39 4.02
Deku Tree’s Last Words 4.83 1.36
Kakariko Village 1.5 2.2
Kokiri Forest 1.26 3.81
Lost Woods 1.72 4.4
Majora’s Theme 4.36 1.36
Middle Boss Battle 4.7 4.63
Overworld 2.46 4.86
Stone Tower Temple 4.36 1.64
Title Theme (OoT) 1.63 1.13
Zelda’s Theme 1.31 2.07

Franchise Name Stress Energy
Megaman AirMan 1.86 3.15
(Capcom) Bubbleman 2.53 3.93

CrashMan 2.36 3.84
Dr.Wily’s Stages (MM 2) 2.28 4.92
Ending (Megaman X) 4.13 4.36
GeminiMan 2.94 4.21
Hardman 2.44 4.76
MetalMan 3.36 4.7
Sigma’s Stage 3.6 3.36
SparkMan 2.84 4.28
Title Screen (MM 3) 2.88 3.32
We Are The Robots 3 4.96

Metroid Brinstar 1.81 3.31
(Nintendo) Crashed Frigate 2.32 1.24

Escape Theme 3.55 2.15
Kraid’s Lair 4.16 2.72
Ridley 4.84 4.92
Rocky Maridia 3.47 1.34
Sandy Maridia 4.16 1.33
Torvus Bog 3.16 2.76
Tourian 5 5

Pokemon Burned Tower 3.4 2.24
(Nintendo) Celadon City 1.4 4.53

Champion Battle 4.18 3.92
Elite Four 1.93 3.73
Lavender Town 3.06 1.53
Kanto Gym Leader Bat-
tle

4.84 5

Pallet Town 1.4 2.76
Pokemon League 1.78 1.18
Radio Tower Takeover 4.4 4.33
Route 02 Theme 1.48 3.24
S.S. Anne Theme 1.44 2.97
Team Rocket Hideout 4.36 4.16

Super Mario Castle 3.86 2.36
(Nintendo) Overworld 1.4 4.24

Overworld (SMB 64) 1.18 4.31
Underwater 1.3 3.23


